对总体均值进行假设检验时样本容量的确定 | 数字化精益制造执行系统(LDMES)

精益课程

5.2.1-3  对总体均值进行假设检验时样本容量的确定

        通过控制样本容量,也可以对发生第二类错误的概率进行控制。由于两类错误发生造成的损失是不同类型的,其严重性也不同,因此不同的人可能会对两类错误的概率作出不同的限制。但是,在确定样本容量之前,必须对发生两类错误所允许的概率作出明确规定。

        检出力(Power of test),就是1-β,相当于“在备择假设成立时不犯第二类错误”的概率,或说“在备择假设成立时拒绝原假设”的概率。

         当α,β和样本容量n三者中有两者已知时,即可计算得到第三者。对于给定的显著性水平α,增大样本容量将会减小β;对于给定的样本容量,减小α将会使β增大,增大α将会使β减小。

        当样本容量n给定时,不能选择太小的显著性水平α,因为将使发生第二类错误的风险增大,通常固定选取α为0.05。当样本容量n给定,α也取定时,如何比较两种检验方法的优劣呢?这就要比较它们犯第二类错误的概率。所谓一种方法比另一种方法“灵敏”,指的就是犯第二类错误的概率β小,或说检出力1-β较高,即备择假设成立时能够很明确地拒绝原假设而接受备择假设。






实操结果分析:

 差值
        Minitab 为每个样本数量计算可帮助其达到指定功效水平的最小差值。样本数量越大,检验能够检测到的差值就越小。您希望检测对于您的应用有实际意义的最小差值。

        此值表示实际总体均值2150kg与假设均值2000kg之间的差值。

样本数量
        Minitab 计算样本必须为多大,具有指定功效的检验才能检测到每个指定的差值。因为样本数量是整数,所以检验的实际功效可能比指定的功效值稍大。

        样本数量越大,检验功效也会越高。您希望样本中有足够的观测值以达到足够的功效。但是,您不希望样本数量过大,因为数量过大会让您在不必要的抽样上浪费时间和金钱,或者检测在统计意义上显著但不重要的差值。

功效
        Minitab 根据指定的差值和样本数量计算检验的功效。功效值 0.9 通常被认为已足够。如果值为 0.9,则表示当差值确实存在时,检测到总体均值与目标之差的概率为 90%。如果检验的功效较低,您可能无法检测到差值并错误地得出不存在任何差值的结论。通常情况下,样本数量越少或差值越小,检验检测到差值的功效就越低。

主要结果:差值、样本数量和功效
        这些结果表明,如果差值为 150,功效为 0.9,则应当收集36 个样本。因为目标功效值 0.9 所生成的样本数量不是整数,所以 Minitab 还显示四舍五入的样本数量的功效(实际功效)。

检查功效曲线
        使用功效曲线可以为您的检验评估合适的样本数量或功效。

        功效曲线表示当显著性水平和标准差保持恒定时,每个样本数量的每个功效与差值组合。功效曲线上的每个符号都表示一个基于输入值的计算值。例如,如果您输入一个样本数量和一个功效值,Minitab 会计算相应的差值并将计算值显示在图形上。

        检查曲线上的值,确定可以在特定功效值和样本数量处检测到的均值与目标之间的差值。通常认为功效值为 0.9 足矣。但是,有些从业者认为功效值为 0.8 足矣。如果假设检验的功效较低,则可能无法检测到实际上有意义的差值。如果增加样本数量,检验功效也会提高。您希望样本中有足够的观测值以达到足够的功效。但是,您不希望样本数量过大,让您在不必要的抽样上浪费时间和金钱或者检测在统计意义上显著但不重要的差值。 如果您减小要检测的差值,则功效也会降低。

        在此图形中,样本数量 36 的功效曲线表明,对于差值 150,检验的功效为 0.9。当差值接近 0 时,检验的功效会降低并接近 α(又称为显著性水平),在该分析中 α 为 0.05。


上一篇:5.2.1-2  假设检验的步骤  下一篇:5.2.2-1  均值、方差和比例的假设检验


(本内容来源于网络,仅供学习交流使用,如有侵权联系即删除)

开启您的数字化精益转型!


越简,越非凡

联系我们